Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The paper is concerned with efficient time discretization methods based on exponential integrators for scalar hyperbolic conservation laws. The model problem is first discretized in space by the discontinuous Galerkin method, resulting in a system of nonlinear ordinary differential equations. To solve such a system, exponential time differencing of order 2 (ETDRK2) is employed with Jacobian linearization at each time step. The scheme is fully explicit and relies on the computation of matrix exponential vector products. To accelerate such computation, we further construct a noniterative, nonoverlapping domain decomposition algorithm, namely localized ETDRK2, which loosely decouples the system at each time step via suitable interface conditions. Temporal error analysis of the proposed global and localized ETDRK2 schemes is rigorously proved; moreover, the schemes are shown to be conservative under periodic boundary conditions. Numerical results for the Burgers' equation in one and two dimensions (with moving shocks) are presented to verify the theoretical results and illustrate the performance of the global and localized ETDRK2 methods where large time step sizes can be used without affecting numerical stability.more » « lessFree, publicly-accessible full text available June 1, 2026
-
The objective of this paper is to develop efficient numerical algorithms for the linear advection-diffusion equation in fractured porous media. A reduced fracture model is considered where the fractures are treated as interfaces between subdomains and the interactions between the fractures and the surrounding porous medium are taken into account. The model is discretized by a backward Euler upwind-mixed hybrid finite element method in which the flux variable represents both the advective and diffusive fluxes. The existence, uniqueness, as well as optimal error estimates in both space and time for the fully discrete coupled problem are established. Moreover, to facilitate different time steps in the fracture-interface and the subdomains, global-in-time, nonoverlapping domain decomposition is utilized to derive two implicit iterative solvers for the discrete problem. The first method is based on the time-dependent Steklov–Poincaré operator, while the second one employs the optimized Schwarz waveform relaxation (OSWR) approach with Ventcel-Robin transmission conditions. A discrete space-time interface system is formulated for each method and is solved iteratively with possibly variable time step sizes. The convergence of the OSWR-based method with conforming time grids is also proved. Finally, numerical results in two dimensions are presented to verify the optimal order of convergence of the monolithic solver and to illustrate the performance of the two decoupled schemes with local time-stepping on problems of high Péclet numbers.more » « less
-
This paper is concerned with the numerical solution of compressible fluid flow in a fractured porous medium. The fracture represents a fast pathway (i.e., with high permeability) and is modeled as a hypersurface embedded in the porous medium. We aim to develop fast-convergent and accurate global-in-time domain decomposition (DD) methods for such a reduced fracture model, in which smaller time step sizes in the fracture can be coupled with larger time step sizes in the subdomains. Using the pressure continuity equation and the tangential PDEs in the fracture-interface as transmission conditions, three different DD formulations are derived; each method leads to a space-time interface problem which is solved iteratively and globally in time. Efficient preconditioners are designed to accelerate the convergence of the iterative methods while preserving the accuracy in time with nonconforming grids. Numerical results for two-dimensional problems with non-immersed and partially immersed fractures are presented to show the improved performance of the proposed methods.more » « less
An official website of the United States government
